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Figure 1: Cost of the EAT-Lancet reference diet in 2011 international dollars, by country income levels and
major regions

We used price data from the International Comparison Program to estimate the cost of the EAT-Lancet reference
diet in 159 countries. Cost estimates are reported in 2011 international dollars, adjusting for inflation using
purchasing power parity price levels for household consumption. The size of the box indicates the IQR. The bottom
and top rule marks the bottom 5th and top 5th percentiles, respectively. The vertical bar rule inside the box shows
the median value for the income group or geographical region.
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Figure 2: Cost of the EAT-Lancet reference diet relative to mean daily per capita household income by country
income levels and major regions

We used price data from the International Comparison Program to estimate the cost of the EAT-Lancet diet and
compared these estimates to mean daily per capita household income. The size of the box indicates the IQR.

The bottom and top rule marks the bottom fifth and top fifth percentiles, respectively. The vertical bar rule inside
the box shows the median value for the income group or geographical region. N=141 countries.
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Figure 3: Comparing the cost of EAT-Lancet reference diets to the minimum cost of nutrient adequacy,

by level of national income or geographical region

We used price data from the International Comparison Program to estimate the cost of the EAT-Lancet diet in

159 countries, and computed the cost of meeting only estimated average requirements, upper limits and average
macronutrient distribution ranges for essential nutrients. At the dashed vertical line, the two diets would have
identical cost. Data shown are the cost of an EAT-Lancet diet as a multiple of the nutrients-only diet—for example,
a value of 1.5 represents a 50% higher cost. The size of the box indicates the IQR. The bottom and top rule marks
the bottom fifth and top fifth percentiles, respectively. The vertical bar rule inside the box shows the median value
for the income group or geographical region. N=159 countries.
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Fig. 4| Food group contributions, expressed as a percentage of total capita diet of eachincome group (that is, total externalities of all food group
monetarized externalities caused by the production offood consumed contributions inabsolute monetary terms) are provided in Fig. 2. ‘Other’ includes

globally and in LICs, LMICs, UMICs and HICs. Bars represent the total combined  contributions from oil crops, oils, stimulants, spices and sweeteners.
external costs on health and ecosystems. Total externalities for the average per
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a,b, Further details onthe underlying environmental mechanisms or resource
use types driving the externalities caused by food production in 2018 and in each
dietary scenario. a, Estimated damage to human health, expressed in million
DALYs, linked to the environmental impacts caused by annual food production
for BASE and dietary change scenarios in101 countries. Stacked bars show the
contributions of individual environmental impact category to human health
burden. The top five contributing environmental impacts are explicitly shown,
and contributions from ‘Other’ include impacts of ozone formation, ionizing
radiation and stratospheric ozone depletion. b, Estimated damage to ecosystems,
expressed in thousands of species loss over the next 100 years, linked to the
environmental impacts caused by annual food production for BASE and dietary
change scenarios in101 countries. Stacked bars present the contributions of
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individual environmentalimpact category to ecosystem quality decline. The top
four contributing environmental impacts are explicitly shown, and contributions
from ‘Other’ include impacts of global warming on freshwater ecosystems,

ozone formation on terrestrial ecosystems, freshwater eutrophication, marine
eutrophication, terrestrial ecotoxicity, freshwater ecotoxicity, marine ecotoxicity
and water consumption onaquatic ecosystems. ¢, Total estimated monetarized
damage to healthand ecosystems, expressed in trillion US$, caused by annual
food productionfor BASE and dietary change scenariosin101countries. Error
bars indicate lower and upper bounds of uncertainty ranges on total global
externalities of each scenario based onthe 95% confidence interval values of life
cycleimpacts of food items (n=1,000 Monte Carlo simulationruns) inaandb, and
on the lower and upper bounds of the monetarization factors of DALYs and species
lossinc.
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Fig. 2 | Impacts of reductions in food loss and waste, technological
change, and dietary changes on global environmental pressures in
2050. These projections of environmental pressures in 2050 are baseline
projections without dedicated mitigation measures for a middle-of-
the-road development pathway, and are expressed as percentages of
present impacts (see Fig. 1). The different measures of change and their
combination are depicted as reductions from the baseline projections

for the different environmental domains (for example, the ‘diets’ bar that
ends at 90% of present impacts of GHG emissions indicates that ambitious
dietary changes (flexitarian) can reduce the projected increase of GHG
emissions from 187% of present impacts to 90%, which represents a
reduction of 52% or 97 percentage points; and dietary changes of medium
ambition (guidelines), which in the figure end at the split line of the

‘diets’ bar, can reduce GHG emissions from 187% of present impacts to
133%, which represents a reduction of 29% or 54 percentage points).

The loss and waste scenarios include reducing food loss and waste by

half (waste/2) and by 75% (waste/4). The technology scenarios include
medium-ambition technological changes up to 2050 (tech) and more
ambitious technological changes (tech+). The diet scenarios include diets
aligned with global dietary guidelines (guidelines), and more plant-based
flexitarian diets (flexitarian) that are reflective of present evidence on
healthy eating. The scenario combinations include all measures of medium
ambition (comb(med): waste/2, tech, guidelines) and all measures of high
ambition (comb(high): waste/4, tech+, flexitarian), the latter including
an optimistic socioeconomic development pathway with higher income
and lower population growth. The diamonds indicate mean planetary-
boundary values (boundary), each associated with uncertainty intervals
highlighted by colour (light green, below the mean value; light orange,
between minimum and maximum values; light red, above maximum
values).
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Fig. 3 | Planetary option space. The figure shows combinations of more ambitious technological changes (tech+). The socioeconomic
dietary change, technological change (tech or tech+), changes in food development pathways include a middle-of-the-road development
loss and waste (waste/2 or waste/4), and socioeconomic development pathway (SSP2), a more optimistic one with higher income and lower
pathways (SSP1, SSP2 or S8P3). These changes are applied to baseline population growth (SSP1), and a more pessimistic one with lower income
conditions in 2050 (baseline). The diet scenarios include diets aligned with  and higher population growth (SSP3). Colours and numbers indicate
global dietary guidelines (guidelines), and more plant-based flexitarian combinations that are below the lower bound of the planetary-boundary
diets (flexitarian) that are reflective of the current evidence on healthy range (dark green, 1), below the mean value but above the minimum value
eating. The loss and waste scenarios include reducing food loss and (light green, 2), above the mean value but below the maximum (orange, 3),
waste by half (waste/2) and by 75% (waste/4). The technology scenarios and above the maximum value (red, 4).

include medium-ambition technological changes up to 2050 (tech) and
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Fig. 4 | Combination and relative contributions of mitigation measures
that simultaneously reduce environmental impacts below the mean
values of the planetary-boundary range. The mitigation measures include
different levels of technological improvements for each environmental
domain (measures of high ambition (tech-+) for nitrogen and phosphorus
application, and measures of medium ambition (tech) for GHG emissions
and for cropland and bluewater use). The other measures are not
differentiated by environmental domain, and include a halving of food loss
and waste (waste/2), changes towards more plant-based flexitarian diets
(FLX), and optimistic socioeconomic development with higher income and
lower population growth (SSP1) than expected at present. A middle-of-
the-road development pathway is also feasible when combined with more
ambitious reductions in food loss and waste (see Fig. 3).
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